
Agent Authorization Policy

Version 2
Each Identity Owner creates a Policy on the ledger, identified by an address ​I​. Each agent has
an agent policy keypair that will be used with ​I​. The policy allows a key to have some
combination of four authorizations:

● 0: PROVE​: agents with this authorization can create Proofs from Credentials
● 1: PROVE_GRANT​: agents with this authorization can grant the PROVE authorization to

other agents
● 2: PROVE_REVOKE​: agents with this authorization can revoke the PROVE

authorization from other agents
● 3: PROVE_ADMIN​: keys with this authorization can modify the provision or revoke prove

authorization policy, i.e., grant and revoke the PROVE_GRANT authorization
○ PROVE_GRANT_GRANT
○ PROVE_GRANT_REVOKE

Each authorization is either on or off. Therefore, an array of authorizations can be represented
in a bitmap using the well known position for each authorization. For example in big endian,
0001 represents [PROVE], and 1000 would represent [PROVE_ADMIN].

This is a public record, but no information in this public record is ever shared with any other
party. Its purpose is to allow for key management of devices in a flexible way, while allowing for
entities to prove in zero knowledge that they are using an agent that is authorized by the entity.
This ZKP is possible because the ledger maintains a global accumulator for all keys with the
PROVE authorization, called the Prover Registry. When a key is added to a Policy, and that key
is given the PROVE authorization, the ledger adds a commitment to the Prover Registry. When
a key loses its PROVE authorization, the ledger removes the associated commitment from the
Prover Registry.

[TODO: How fine grained should we allow policy management to be?]

● A can revoke A, B, and C, and where B, can only revoke B and C
● This is a deep subtopic

Setup
1. Trusted setup

a. There is a global accumulator needed to store commitments to the keys with
PROVE authorizations. From this accumulator, a key can prove in zero
knowledge that it is authorized to prove. This requires a trusted setup.

ID Owner's First Agent
1. Agent creates policy management keypair (A​p​

pk​, A​p​
sk​) and a secret S

2. Agent creates policy address ​I​ on the ledger and adds A​p​
pk ​ as a key and ensures that

key has all authorizations (111).
3. Agent adds K = Comm(S, r0) to the PROVE authorization.

a. What kind of accumulator to use?
4. The ledger adds commitment Comm(K, ​I​) to the global accumulator ​A​. The only

commitments added to the global accumulator are those values with the PROVE
authorization.

ID Owner's Subsequent Agents
1. One authorized agent (or multiple agents in a multisig scenario) provisions a new agent.
2. The new Agent creates policy management keypair (A​p​

pk​, A​p​
sk​) and S.

3. New agent sends A​p​
pk​ and K= Comm(S, r0) back to the provisioning agent(s).

4. Provisioning agent(s) adds authorization for A​p​
pk​ and K to the policy.

Lifecycle
 As agents are granted PROVE authorization in address ​I​, ​the ledger adds or removes the
commitments to the accumulator. Agents can be added to be provisioners and revokers by
admin agents. The provision or revoke policy can be changed to require more than one agent to
agree on a change like 2 of 3. The ledger will enforce these rules by requiring multiple
signatures complete the transaction.

Claim Lifecycle

Issuance
1. Claim Receiver sends a Claim Request, which contains a blinded link secret and blinded

address ​I​.
2. Issuer selects an index i for the claim from his non-revocation accumulator A​I​.
3. Issuer generates claim C using A​I​.
4. Issuer sends C and A​I​ to Claim Receiver.
5. Issuer adds i to his non-revocation accumulator A​I​.
6. Claim Receiver provides C and A​I​ to Identity Owner.
7. Identity Owner gives C, and A​I ​to Proof Presenter.

Proof Presentation
1. Claim Presenter refreshes the revocation data from the non-revocation accumulator and

Prover Registry.
2. Claim Presenter requests access from a Verifier.
3. Verifier sends a Proof Request: what must be proven and which attributes must be

disclosed.
4. Claim Presenter sends disclosed claim attributes and other proofs (in zero-knowledge)

and a zero-knowledge proof that
a.
b.
c.
d.

e.
f. is the accumulator that contains

i. is defined for prime
ii.
iii. We say that for .

iv. It must hold that
g.
h. Our intention is to prove the hierarchy of commitments: is a commitment to K,

which is itself a commitment to S. We want to prove the knowledge of S by
putting it in another commitment .

i. All values not enclosed in ()’s are assumed to be known to the verifier.
j. We want to prove
k.
l. For this we need additional commitments C2,C3,C4.

m.
n. The proof can be prepared as concatenation of

NIZK{ (r4,C1): (C1 in A) && C4 = Comm(C1,r4) } = CommAcc proof
NIZK{ (K,I,r2): Credential(I) && C3 =Comm(K,I,r2) } = Claim+commitment proof
NIZK{ (K,I,r2,r4): C3 = Comm(K,I,r2) && C4 = Comm(Comm(K,I),r4) } = DComm
proof
NIZK{ (S,r0,r1,r2,I): C2 = Comm(S,r1) && C3 = Comm(Comm(S,r0),I,r2)} = DComm
proof

These 4 proofs can be united into a single one with some reduction in size.

o. Claim index i has not been revoked yet.
5. Claim Presenter generates
6. Claim Presenter computes

a.
b.
c.
d.
e.

https://www.codecogs.com/eqnedit.php?latex=K%20%5Cleftarrow%20%5Cmathrm%7BComm%7D(S%2C%20r_0)%0
https://www.codecogs.com/eqnedit.php?latex=C_1%20%5Cleftarrow%20%5Cmathrm%7BComm%7D(K%2C%20I)%0
https://www.codecogs.com/eqnedit.php?latex=C_2%20%5Cleftarrow%20%5Cmathrm%7BComm%7D(S%2C%20r_1)%0
https://www.codecogs.com/eqnedit.php?latex=%20C_3%20%5Cleftarrow%20%5Cmathrm%7BComm%7D(K%2C%20r_2)%0
https://www.codecogs.com/eqnedit.php?latex=C_4%20%5Cleftarrow%20%5Cmathrm%7BComm%7D(C_1%2C%20r_4)%0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cmathcal%7BA%7D%20%0
https://www.codecogs.com/eqnedit.php?latex=C_1%0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathcal%7BA%7D%5Bu%2CN%5D(b_1%2Cb_2%2C%5Cldots%2Cb_n)%0
https://www.codecogs.com/eqnedit.php?latex=b_i%5Cin%5BB%3BB%5E2-1%5D%0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathcal%7BA%7D%20%5Cleftarrow%20u%5E%7Bb_1%20b_2%5Ccdots%20b_n%7D%5Cbmod%7BN%7D%0
https://www.codecogs.com/eqnedit.php?latex=b_i%5Cin%20%5Cmathcal%7BA%7D%0
https://www.codecogs.com/eqnedit.php?latex=b_1%2Cb_2%2C%5Cldots%2Cb_n%0
https://www.codecogs.com/eqnedit.php?latex=B%5E2-1%20%3Cq%2F2%0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathrm%7Bwit%7D%20%5Cleftarrow%20%5Cmathcal%7BA%7D%5E%7B-C_1%7D%5Cbmod%7BN%7D%0
https://www.codecogs.com/eqnedit.php?latex=C_3%0
https://www.codecogs.com/eqnedit.php?latex=C_2%0
https://www.codecogs.com/eqnedit.php?latex=ZKPoK%5C%7B(S%2C%20K%2C%20C_1%2C%20I%2C%20r_0)%3A%20%5Cquad%20I%20%5Cin%20%5Cmathrm%7BClaim%7D%20%5Cwedge%20C_1%20%5Cin%20%5Cmathcal%7BA%7D%20%5Cwedge%20K%20%3D%20%5Cmathrm%7BComm%7D(S%2C%20r_0)%20%5C%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Cpi%20%5Cleftarrow%20%5Cmathrm%7BDComm%7D_S(C_2%2C%20C_3)%20%5Cwedge%20%5Cmathrm%7BDComm%7D_K(C_3%2C%20C_4)%20%5Cwedge%20CommAcc_%7BC_1%7D(C_4%2C%20%5Cmathcal%7BA%7D)%20%5Cwedge%20I%20%5Cin%20Claim%0
https://www.codecogs.com/eqnedit.php?latex=s%27%2C%20k%27%2C%20i%27%0
https://www.codecogs.com/eqnedit.php?latex=v%20%5Cleftarrow%20%5Cmathrm%7BComm%7D(s%27%2C%20k%27%2C%20i%27)%0
https://www.codecogs.com/eqnedit.php?latex=c%20%5Cleftarrow%20H(C_2%20%7C%7C%20C_3%20%7C%7C%20C_4%20%7C%7C%20v%20)%0
https://www.codecogs.com/eqnedit.php?latex=%5Cwidetilde%7Bs%7D%20%5Cleftarrow%20s%27%20-%20Sc%0
https://www.codecogs.com/eqnedit.php?latex=%5Cwidetilde%7Bk%7D%20%5Cleftarrow%20k%27%20-%20Kc%0
https://www.codecogs.com/eqnedit.php?latex=%5Cwidetilde%7Bi%7D%20%5Cleftarrow%20i%27%20-%20Ic%0

7. Claim Presenter sends to Verifier
8. Verifier validates the proof

a. Computes

i.
ii.

b. Verifies that

“I am a valid claim presenter”<=
<=“I am part of the claim policy”<=
<=“My public key is part of the claim policy”<=
<=“I know the private key of the public key of the claim policy”<=
<=“I know a private key and a public key which are part of the policy that is part of the claim.”<=
<=”I know S which is private key of a public key which is part of the policy that is mentioned in
the claim”<=
<=”I know K and S s.t. K is a commitment to S, and K is part of the policy that is mentioned in
the claim”<=
<=”I know K and S s.t. K is a commitment to S, and K is part of policy I, and I is the policy in the
claim”
<=”I know K and S s.t. K is a commitment to S, and (K,I) belong to the key-policy accumulator in
the claim, and I is the policy in the claim”<=
<=”Here is C​1​ which is a commitment to K which is a commitment to S, s.t. (K,I) belong to the
key-policy accumulator, and I is the policy in the claim”

Potential attacks
1. Inspecting the ledger reveals all of the agents that are associated with an entity. Hence

even if A​p​
pk​ is revealed for one agent, agent is correlated to the entity, all agents of that

entity are correlated.
a. The security is provided by the fact that A​p​

pk​ cannot be derived from or correlated
to the proof.

2. An agency that is malicious or compromised (all storage is encrypted). Kinds of
compromises:

a. Agency router logs are leaked, but the router is still in control of agency.
b. Adversary is able to get into Agency machines and eavesdrop on all events

(server logs, read disk files, etc) but still not manipulate agency machines.
c. Active attack (partial control): The adversary controls and is able to manipulate

some part of the agency.
3. It will become obvious to third parties how secure a given address (person or

organization) is. Does this encourage an attacker?
4. Correlation by network inspection (source/destination IP address, inference of packet

timing and size)
a. An agency router can act as a privacy-enhancing proxy.

https://www.codecogs.com/eqnedit.php?latex=%5C%7BC_2%2C%20C_3%2C%20C_4%2C%20%5Cwidetilde%7Bs%7D%2C%20%5Cwidetilde%7Bk%7D%2C%20%5Cwidetilde%7Bi%7D%2C%20c%5C%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Coverline%7Bv%7D%20%5Cleftarrow%20%5Cmathrm%7BComm%7D(%5Cwidetilde%7Bs%7D%2C%20%5Cwidetilde%7Bk%7D%2C%20%5Cwidetilde%7Bi%7D)%20%7BC_2%7D%5Ec%20%7BC_3%7D%5Ec%20%7BC_4%7D%5Ec%20%0
https://www.codecogs.com/eqnedit.php?latex=%5Coverline%7Bc%7D%20%5Cleftarrow%20H(C_2%20%7C%7C%20C_3%20%7C%7C%20C_4%20%7C%7C%20%5Coverline%7Bv%7D)%0
https://www.codecogs.com/eqnedit.php?latex=%5Coverline%7Bc%7D%20%3D%20c%0

i. Reason 1, by going through a proxy, the recipient would see the proxy's
IP address, not the sender's IP address. Because many are using the
same proxy, this masks the sender somewhat.

ii. Reason 2, an attacker could correlate based on the timing of messages or
the size of messages sent through a router. A Router could hold
messages for a random period of time before forwarding, and add random
number of bytes of garbage to a message to thwart these types of
inference attacks.

iii. Note: this could motivate an attack on a major agency for the purposes of
eavesdropping.

b. With this solution, isn't It now ​more ​imperative that we employ a mix network? Or
did we have the same risk with correlation of IP addresses?

Version 1
TO ADD: agents can be linkable within the same relationship (DID-DID), but not across
relationships.

UPDATE: ​Simplification​ with scheme

0. Introduction
This protocol supports:

● Unique Identity Owner;
● Multiple Indistinguishable Claim Receivers;
● Multiple Distinguishable Claim Presenters (Agents);
● Unique Updateable Agent Revoker;
● Unique Non-updateable Provisioner.

1. Table of assets and roles

Asset\Role Identi
ty
Owne
r

Provision
er

Claim
Receiv
er

Claim
Present
er

Claim
Revok
er

Agent
Revoke
r

Verifi
er

Claim
Issuer

Agent key a​ag
 O

Agent revocation
key a​ar

 O

Agent ID V​ag KM O KM

Agent Revoker ID
 V​ar

1
 K O

Provisioning key
a​pr

 O

Provisioning ID
V​pr

 O K K

Agent certificate
S​a

 KM O

Link secret a​ls O K K

Claim revocation
key a​cr

 O

Claim revocation
ID V​cr

 K K K

Owner defined
attributes A​O

O K K K 2

Issuer defined
attributes A​I

 K K K 3 O

Legend
O: owns
K: knows
KM: knows multiple values

2. Construction
● (a​ag​, V​ag​)​ ​- private-public signature keypair, unique for agent.
● (a​ar​,V​ar​) - private-public signature keypair;
● (a​pr​,V​pr​) - private-public signature keypair;
● S​a ​= Sig​a_pr​(V​ar​,V​ag​)
● (a​cr​,V​cr​) - private-public signature keypair;
● Claim attributes signed by Issuer: V​pr​,a​ls​, identity attributes

1 Can be a threshold signature public key if we want a multisignature revocation
2 Selectively disclosed
3 Selectively disclosed

3. Use cases

3.1. Setup

3.1.1 Identity Owner
1. Identity Owner generates link secret a​ls​ as a random value
2. Identity Owner defines owner-defined attributes A​O​;
3. Identity Owner selects an agent accumulator: his own one or a global one.

3.1.2 Provisioner
1. Provisioner generates provisioning key a​pr​;
2. Provisioner computes provisioning ID V​pr​;
3. Provisioner tells V​pr​ to Identity Owner.

3.1.3 Claim Receiver
1. Claim Receiver gets V​pr​ from Identity Owner.

3.1.4 Agent Revoker
1. Agent Revoker generates agent revocation key a​ar​ and agent revocation ID V​ar​.
2. Agent Revoker submits V​ar ​to Provisioner.

3.1.5 Claim Presenter
1. Claim Presenter generates agent key a​ag ​and agent ID V​ag​.
2. Claim Presenter submits V​ag​ to Provisioner.
3. Provisioner creates agent certificate S​a​ for Claim Presenter.
4. Provisioner adds S​a ​ to the agent accumulator and sends S​a​ to Agent Revoker.
5. Claim Presenter stores S​a​.

3.2 Claim Lifecycle

3.2.1 Issuance
8. Claim Receiver gets A​O​, a​ls​ from Identity Owner;
9. Claim Receiver contacts the Issuer and submits A​O​, a​ls​,​ ​and V​pr​ in the blinded form.
10. Issuer selects an index i for the claim and adds it to A​I​.
11. Issuer generates claim C using A​I​.
12. Issuer sends C and A​I​ to Claim Receiver.
13. Issues adds i to his non-revocation accumulator.
14. Claim Receiver provides C and A​I​ to Identity Owner.
15. Identity Owner gives C, A​O​, a​ls​,A​I​,​ ​and V​pr​ to Claim Presenter.

3.2.2 Presentation
9. Claim Presenter refreshes the revocation data from the non-revocation accumulator and

agent accumulator.
10. Claim Presenter contacts Verifier.
11. Verifier provides a presentation policy: what attributes must be disclosed.
12. Claim Presenter presents claim attributes (in zero-knowledge) and a zero-knowledge

proof that
a. He knows V​pr​ contained in the claim;
b. He knows (V​ar​,V​ag​),S​a​, where S​a ​is a signature of (V​ar​,V​ag​) on V​pr​;
c. He knows private key corresponding to V​ag​;
d. V​ag​ has not been revoked yet.
e. Claim index i has not been revoked yet.

13. Verifier checks the proof.

3.2.3 Revocation
1. Issuer selects the index i to revoke.
2. Issuer removes i from the non-revocation accumulator

3.3 Agent Revocation
1. Agent Revoker selects the agent he revokes and retrieves his agent ID V​ag​ and

certificate S​a​.
2. Agent Revoker approaches the agent accumulator and provides S​a​ and a zero

knowledge proof that
a. S​a ​ is a signature on some key on some (V​ar​,V​ag​).
b. He knows the private key from V​ar​.

3.4 Agent Revoker Rotation
1. Generate new Agent Revoker ID.
2. Issue new agent certificates using the new Agent Revoker ID.
3. Replace the old agent certificates with the old ones.
4. Revoke the old agent certificates/

4. Simplification
The process can be simplified if we assume that the Identity Owner has a software/hardware
vault, where he keeps all most valuable secrets and runs protected code. Then the Provisioner
code may run there, and needs only occasional interaction with the outer world to publish his ID,
provision new agents, and revoke them.

