

DKMS Requirements Report

DHS Science & Technology Directorate
SBIR Phase 2 Milestone 1 Deliverable
30 June 2017

Drummond Reed, Principal Investigator
Chief Trust Officer, Evernym Corporation

Subcontractors:

Manu Sporny and David Longley, Digital Bazaar
Kent Seamons, BYU Internet Security Research Lab
Stephen Wilson, Lockstep Consulting
Christopher Allen, Alacrity Management

Table of Contents

1. Introduction 4

2. Summary of Attachments 5

3. Analysis of the Literature Search 6

4. Analysis of NIST 800-130 Requirements 7

4.1. Introduction 7

4.2. Basic Framework Requirements (Section 2) 7

4.3. Goals of the CKMS Design (Section 3) 8

4.4. Security Policies (Section 4) 9

4.5. Roles and Responsibilities (Section 5) 10

4.6. Cryptographic Keys and Metadata (Section 6) 10

4.7. Interoperability and Transitioning (Section 7) 11

4.8. Security Controls (Section 8) 11

4.9. Testing and System Assurances (Section 9) 12

4.10. Disaster Recovery (Section 10) 12

4.11. Security Assessment (Section 11) 13

4.12. Technological Challenges (Section 12) 13

4.13. Conclusions 14

5. Analysis of Other Key Management Guidelines 16

5.1. NIST 800-57 Part 1: Recommendation for Key Management 16

5.2. OWASP Key Management Cheat Sheet 16

5.3. KMIP (Key Management Interoperability Protocol) 17

6. Analysis of Unique DKMS Requirements 18

6.1. Decentralization and Decentralized Identifiers (DIDs) 18

6.2. Privacy and Pseudonymity 19

6.3. Usability 19

6.4. Multiple Trust Models 20

 DKMS Requirements Report 20 June 2017 Page 2

6.5. Delegation and DID Guardianship 20

6.6. Portability 20

6.7. Extensibility 21

6.8. Simplicity 21

6.9. Open System and Open Standard 22

7. Conclusion 23

 DKMS Requirements Report 20 June 2017 Page 3

1. Introduction
This document and the attached supplementary documents are the deliverable under Milestone
1 of Evernym’s HSHQDC-17-C-00018, “Decentralized Key Management using Blockchain”. Per
the contract:

The output of this milestone will be a written summary of the requirements and an
analysis of the design and architectural constraints for a DKMS. This document will
provide the background needed to create and design the DKMS V1 specification.

The primary objective of this milestone was to research and analyze the questions enumerated
in the SOW to establish the user, business, and technology requirements for a DKMS
(Decentralized Key Management System) based on NIST Special Publication 800-130: A
Framework for Designing Cryptographic Key Management Systems.

This document contains the following sections:

1. Summary of Attachments: A schedule of the attached documents and the purpose of
each.

2. Analysis of the Literature Search: Highlights from key academic and industry research
documents on the subjects related to distributed systems, blockchains, and key
management.

3. Analysis of NIST 800-130 Requirements. A summary of our work to define the DKMS
requirements using the NIST 800-130 requirements for designing cryptographic key
management systems.

4. Analysis of Other Key Management Guidelines. A summary of inputs from other key
management publications and standards.

5. Analysis of Unique DKMS Requirements. Our analysis of the requirements that we
believe to be unique to the DKMS model of decentralized key management based on
DIDs (decentralized identifiers) rooted on distributed ledgers.

6. Conclusion. Our final recommendations regarding DKMS requirements and the
transition to the Milestone 2 phase of DKMS design and architecture.

 DKMS Requirements Report 20 June 2017 Page 4

2. Summary of Attachments
The following documents are incorporated as part of this Report:

1. Key Management Literature Search. This survey of related work was compiled by the
research team, led by Kent Seamons and his team of graduate students at BYU Internet
Security Research Lab.

2. DKMS Requirements Spreadsheet Based on NIST 800-130. This spreadsheet
analyzes the applicability of all 258 cryptographic key management system requirements
in NIST 800-130 to to DKMS.

3. DKMS Requirements Text Based on NIST 800-130. This is an annotated copy of the
text portions of NIST 800-130 defining each of the 258 requirements. Each requirement
is broken out and categorized according to the DKMS Requirements Spreadsheet. All
modified requirements are annotated to explain how the DKMS requirement differs from
the standard CKMS requirement.

 DKMS Requirements Report 20 June 2017 Page 5

3. Analysis of the Literature Search
As part of the Milestone 1 research on requirements, Evernym worked with BYU Internet
Security Research Lab (ISRL) to compile a categorized list of papers from academia and
research on the following topics:

1. Key Management
a. Key Exchange
b. Key Storage
c. Key Usage / Forward Secrecy
d. Key Transparency
e. Revocation

2. Certificates and PKI
a. Public Key Infrastructure
b. Automated Certificate Issuance
c. Web of Trust
d. Bitcoin Key Management

3. Usability
a. Secure Messaging
b. Secure Email

4. Password Management
5. Recovery and Backup

a. Personal Knowledge Questions
b. Social Recovery
c. Account Hijacking
d. Backup Authentication Schemes

This survey of the literature reveals some surprising insights about the requirements for DKMS:

1. There have been no prior usability studies of key recovery and key portability. This
suggests that the opportunity for a decentralized key management system is relatively
new, due to recent emergence of large-scale public distributed ledgers.

2. Usability studies of secure messaging and secure email have shown both achieve
usable end-to-end encryption, but neither demonstrate usable key management.
Users of secure messaging apps such as WhatsApp consistently fail to correctly validate
keys, and usable secure email tools handle key management so users don’t have to.

3. There has never been a successful system that provides usable key management
to end users. This illustrates the core usability challenge facing DKMS.

4. Account recovery using security questions has been shown repeatedly to be
vulnerable to attack. This reinforces that DKMS account recovery and key recovery
need to take a very different approach—which it must anyway, because DKMS key
management cannot rely on centralized service providers to begin with.

 DKMS Requirements Report 20 June 2017 Page 6

https://isrl.byu.edu/
https://isrl.byu.edu/

4. Analysis of NIST 800-130 Requirements

4.1. Introduction
NIST Special Publication 800-130, A Framework for Designing Cryptographic Key Management
Systems, is the most comprehensive framework of its kind. It contains 258 individual
requirements in 11 categories covering every aspect of cryptographic key management from
key generation to quantum computing threats.

From the introduction:

This Framework for Designing Cryptographic Key Management Systems (CKMS) is a
description of the topics to be considered and the documentation requirements
(henceforth referred to as requirements) to be addressed when designing a CKMS. The
CKMS designer satisfies the requirements by selecting the policies, procedures,
components (hardware, software, and firmware), and devices (groups of components) to
be incorporated into the CKMS, and then specifying how these items are employed to
meet the requirements of this Framework.

A CKMS consists of policies, procedures, components and devices that are used to
protect, manage and distribute cryptographic keys and certain specific information,
called (associated) metadata herein. A CKMS includes all devices or sub-systems that
can access an unencrypted key or its metadata. Encrypted keys and their
cryptographically protected (bound) metadata can be handled by computers and
transmitted through communications systems and stored in media that are not
considered to be part of a CKMS.

It was precisely this comprehensive coverage of all aspects of key management system design
that led Evernym to select NIST 800-130 as the starting point for the DKMS requirements.

The following sections provide a high level section-by-section summary of our analysis
contained in the two attachments, DKMS Requirements Spreadsheet Based on NIST 800-130,
and DKMS Requirements Text Based on NIST 800-130.

4.2. Basic Framework Requirements (Section 2)

DKMS has the same requirement 4 80%

DKMS has a modified requirement 1 20%

Requirement is not applicable to DKMS 0 0%

Total requirements in this section 5 100%

 DKMS Requirements Report 20 June 2017 Page 7

This section discusses the motivation, intent, properties, and limitations of a Cryptographic Key
Management Framework. It is highly aligned with the intent of the DKMS specifications. The
only modified requirement was:

FR:2.5 The CKMS design shall specify all major devices of the CKMS (e.g., the make,
model, and version).

Our modified requirement reflects the overall theme of many of the modified requirements:

Since the DKMS is a generalized and extensible framework, it is not possible to specify all the
devices that it will encompass. What the DKMS can specify is requirements for the types of
devices it is intended to support, e.g., mobile phones, laptops, desktops, servers. etc.

In other words, NIST 800-130 is intended mainly as a framework for producing a specific
instance of a CKMS, not necessarily another framework. While DKMS is an instance of a
CKMS, it also functions in some respects as a framework. This is further discussed in the
Conclusion, below.

4.3. Goals of the CKMS Design (Section 3)

DKMS has the same requirement 7 43.75%

DKMS has a modified requirement 6 37.5%

Requirement is not applicable to DKMS 3 18.75%

Total requirements in this section 16 100%

Again, there is a high degree of alignment between the goals of NIST 800-130 and those of
DKMS. The only reason for the higher number of modified requirements is that some NIST
800-130 requirements apply only to specific CKMS that are able to identify all:

● Intended applications
● Intended users and responsibilities
● Target devices
● Third party testing programs
● User interfaces
● Error prevention features

While the DKMS specifications can define general requirements for these components and
features, as a framework it cannot be fully prescriptive for all these requirements.

 DKMS Requirements Report 20 June 2017 Page 8

4.4. Security Policies (Section 4)

DKMS has the same requirement 22 81%

DKMS has a modified requirement 5 19%

Requirement is not applicable to DKMS 0 0%

Total requirements in this section 27 100%

The key difference in this section is that NIST 800-130 assumes that a specific CKMS will define
an overall CKMS Security Policy covering the entire CKMS. As a framework, DKMS can cover
any number of security domains, so it cannot specify a single overall security policy. It can,
however, work in conjunction with trust frameworks—potentially even global trust
frameworks—to apply specific security policies. And these trust frameworks can be layered
precisely as recommended in this figure from page 19 of NIST 800-130:

 DKMS Requirements Report 20 June 2017 Page 9

4.5. Roles and Responsibilities (Section 5)

DKMS has the same requirement 4 80%

DKMS has a modified requirement 1 20%

Requirement is not applicable to DKMS 0 0%

Total requirements in this section 5 100%

Again, there is a high degree of alignment in this section. The only modified requirement is this
one:

FR:5.5 The CKMS design shall specify all automated provisions for identifying security
violations, whether by individuals performing authorized roles (insiders) or by those with no
authorized role (outsiders).

This is overly prescriptive for DKMS as a framework. Thus the modified requirement:

As a generalized and extensible framework, the DKMS specifications cannot specify all
automated provisions for identifying security violations. It can define standards and best
practices, but it should also encourage market forces to innovate improvements in security
violation detection and remediation.

4.6. Cryptographic Keys and Metadata (Section 6)

DKMS has the same requirement 76 61.3%

DKMS has a modified requirement 45 36.3%

Requirement is not applicable to DKMS 3 2.4%

Total requirements in this section 124 100%

This is by far the largest section of NIST 800-130, encompassing nearly half the requirements.
The alignment in this section almost perfectly mirrors the overall alignment (see the Conclusion,
below). Again, the primary difference in alignment is the assumption in NIST 800-130 that all
conforming CKMS will be concrete instances and not frameworks. This is represented in the first
requirement in this section:

FR:6.1 The CKMS design shall specify and define each key type used.

 DKMS Requirements Report 20 June 2017 Page 10

The modified requirement explains why the DKMS specifications need to take a more extensible
approach:

While the DKMS specifications will define a standard set of key types, they are intentionally
extensible to support new key types as they are introduced by new distributed ledger and
encryption technologies. A primary purpose of the DKMS specifications is to enable prompt
and safe propagation of these new key types among DKMS wallets and agents.

This extensibility is actually a primary feature of the DKMS design, since it introduces a
dimension of evolutionary resilience that is needed to maintain a highly scalable cybersecurity
infrastructure over time.

Most of the other modified requirements are due to the difference that the NIST 800-130
expects a CKMS designer can define all hardware, software, and policies used throughout the
system, whereas DKMS as a framework is not able to be fully prescriptive.

4.7. Interoperability and Transitioning (Section 7)

DKMS has the same requirement 8 100%

DKMS has a modified requirement 0 0%

Requirement is not applicable to DKMS 0 0%

Total requirements in this section 8 100%

This is the only section in which NIST 800-130 and DKMS requirements are in 100% alignment.
This highlights how interoperability is a paramount requirement of DKMS. However DKMS also
has a strong requirement for portability that is not represented in the 8 requirements in this
section. See the Analysis of Unique DKMS Requirements below for more.

4.8. Security Controls (Section 8)

DKMS has the same requirement 6 31.6%

DKMS has a modified requirement 13 68.4%

Requirement is not applicable to DKMS 0 0%

Total requirements in this section 19 100%

By contrast, this section has the lowest level of alignment. The reason is simply that most CKMS
will be highly prescriptive about the security controls throughout, whereas DKMS as a

 DKMS Requirements Report 20 June 2017 Page 11

framework is not designed for that level of prescription. The first requirement in this section is a
good example:

FR:8.1 The CKMS design shall specify each of its CKMS devices and their intended
purposes.

The DKMS modified requirement is:

As a generalized and extensible framework, the DKMS specifications cannot specify
specific devices. The DKMS specifications shall specify classes of devices and the
recommended requirements for those devices as well as conformance requirements for trust
frameworks that reference the DKMS specifications.

This applies uniformly to all the modified requirements in this section—they all apply, just at a
more general level with DKMS.

4.9. Testing and System Assurances (Section 9)

DKMS has the same requirement 9 52.9%

DKMS has a modified requirement 8 47.1%

Requirement is not applicable to DKMS 0 0%

Total requirements in this section 17 100%

The same analysis applies to this section. In addition, to the extent DKMS is itself a framework,
it may require its own certification and testing programs, perhaps in conjunction with specific
trust frameworks. See the Analysis of Unique DKMS Requirements below for more.

4.10. Disaster Recovery (Section 10)

DKMS has the same requirement 6 50%

DKMS has a modified requirement 3 25%

Requirement is not applicable to DKMS 3 25%

Total requirements in this section 12 100%

There is only moderate alignment of the requirements in this section for two reasons:

1. At the macro level, the disaster recovery requirements of a conventional CKMS do not
apply to distributed ledger technologies, especially those for public blockchains that

 DKMS Requirements Report 20 June 2017 Page 12

operate at global scale.
2. At the micro level (individual identity owners), the disaster recovery requirements are

different because a DKMS has no centralized control or management.

However, disaster recovery is extremely important in both conventional CKMS and in DKMS, so
the two will only differ in specific strategies for achieving it.

4.11. Security Assessment (Section 11)

DKMS has the same requirement 15 93.75%

DKMS has a modified requirement 1 6.25%

Requirement is not applicable to DKMS 0 0%

Total requirements in this section 16 100%

Despite the differences between conventional CKMS and DKMS, there is very high alignment
on the requirements for security assessment of both.

4.12. Technological Challenges (Section 12)

DKMS has the same requirement 6 75%

DKMS has a modified requirement 2 25%

Requirement is not applicable to DKMS 0 0%

Total requirements in this section 8 100%

There is also very high alignment within this final section, particularly when you consider the
only two modified requirements are those that deal with “external access to CKMS devices”,
which only partially applies to a decentralized key management system.

 DKMS Requirements Report 20 June 2017 Page 13

4.13. Conclusions
The overall alignment between NIST 800-130 requirements for CKMS design and the DKMS
design requirements are shown in this table and in Figure 1:

DKMS has the same requirement 163 63%

DKMS has a modified requirement 85 33%

Requirement is not applicable to DKMS 10 4%

Total requirements 258 100%

Figure 1: Alignment between NIST 800-130 and DKMS requirements

As the notes on each section reveal, the primary reason for the modified or N/A requirements is
that NIST 800-130 is intended to be a framework for designing concrete CKMS instances, while
DKMS is both an instance of a CKMS and a framework for conformant DKMS products from an
open market of vendors and service providers. As a “subframework”, the DKMS specifications
cannot be as prescriptive as most concrete CKMS instance specifications based on NIST
800-130.

That said, the vast majority (96%) of the 258 NIST 800-130 requirements apply directly or with
relatively little modification to DKMS. Very few do not apply, and those that do not are
requirements that assume that a CKMS is operated by a centralized authority or uses a specific
physical plant, set of devices, or set of keys.

 DKMS Requirements Report 20 June 2017 Page 14

Overall, in our work we were struck by both the comprehensive coverage and remarkable level
of detail achieved by the NIST 800-130 requirements. There is good reason it has proved itself
the gold standard for CKMS design, and this will be of great benefit as we proceed with DKMS
design and architecture.

 DKMS Requirements Report 20 June 2017 Page 15

5. Analysis of Other Key Management Guidelines

5.1. NIST 800-57 Part 1: Recommendation for Key Management
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf

NIST 800-57 is not a requirements document, but a set of recommendations for CKMS
designers and developers. From the Introduction:

Part 1, General, contains basic key management guidance. It is intended to advise
developers and system administrators on the "best practices" associated with key
management. Cryptographic module developers may benefit from this general guidance
by obtaining a greater understanding of the key management features that are required
to support specific, intended ranges of applications. Protocol developers may identify key
management characteristics associated with specific suites of algorithms and gain a
greater understanding of the security services provided by those algorithms. System
administrators may use this document to determine which configuration settings are
most appropriate for their information.

While it does not introduce specific new requirements, the advice in NIST 800-57 should be
taken into account in the design and architecture stage of DKMS.

5.2. OWASP Key Management Cheat Sheet
https://www.owasp.org/index.php/Key_Management_Cheat_Sheet

This is a concise and direct set of recommendations for secure usage of cryptographic keys
from the Open Web Application Security Project (OWASP). From the introduction:

This Key Management Cheat Sheet provides developers with guidance for implementation of
cryptographic key management within an application in a secure manner. It is important to
document and harmonize rules and practices for:

1. Key life cycle management (generation, distribution, destruction)
2. Key compromise, recovery and zeroization
3. Key storage
4. Key agreement

Like NIST 800-57, the OWASP Key Management Cheat Sheet does not introduce any specific
new requirements, but it does guide developers with references to specific publications and
standards from NIST and others for dealing with particular challenges in key management. This
guidance should be reflected in the design and architecture of the DKMS specifications.

 DKMS Requirements Report 20 June 2017 Page 16

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://www.owasp.org/index.php/Key_Management_Cheat_Sheet

5.3. KMIP (Key Management Interoperability Protocol)
https://en.wikipedia.org/wiki/Key_Management_Interoperability_Protocol

KMIP is an OASIS Technical Committee focused on specifications for interoperability of key
management products and services. From the Wikipedia page:

The Key Management Interoperability Protocol (KMIP) is an extensible communication
protocol that defines message formats for the manipulation of cryptographic keys on a key
management server. Keys may be created on a server and then retrieved, possibly wrapped
by other keys. Both symmetric and asymmetric keys are supported, including the ability to
sign certificates. KMIP also allows for clients to ask a server to encrypt or decrypt data,
without needing direct access to the key.

The KMIP standard was first released in 2010 and has since become the industry standard
for key management. Vendors have demonstrated commercially available clients and
servers at every recent RSA Conference.

While the KMIP Technical Committee has not produced specific requirements documents (that
we could find), the design of the KMIP protocol and key management artifacts is highly relevant
to the DKMS design precisely because the entire focus is interoperability. The biggest difference
is that KMIP is focused on server-centric key management for enterprises, whereas DKMS
architecture is “identity owner centric”, which in the case of individuals means starting with edge
devices and working outwards.

Nonetheless, we anticipate that DKMS interoperability architecture will be significantly
influenced by KMIP architecture and the design choices made by the KMIP Technical
Committee.

 DKMS Requirements Report 20 June 2017 Page 17

https://en.wikipedia.org/wiki/Key_Management_Interoperability_Protocol
https://en.wikipedia.org/wiki/Cryptographic_keys
https://en.wikipedia.org/wiki/Communication_protocol
https://en.wikipedia.org/wiki/Communication_protocol
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Key_management
https://en.wikipedia.org/wiki/Key_management
https://en.wikipedia.org/wiki/Extensible
https://en.wikipedia.org/wiki/Symmetric-key_algorithm

6. Analysis of Unique DKMS Requirements
As comprehensive as NIST 800-130 is, it is still rooted in the worldview of conventional PKI
(public key infrastructure). This worldview assumes a CKMS:

● Has a centralized body defining, implementing, and controlling usage of the CKMS (even
if it is a federated system).

● Has a bounded deployment target with a bounded set of roles, domains, and devices.
● Has a specific trust model with a fixed set of security and privacy policies.
● Has the ability to train and educate all necessary personnel on the usage of the CKMS.

A DKMS cannot make any of these assumptions. In many ways this is analogous to how a local
area network compares to the Internet. The local area network can make all the assumptions
above; the Internet cannot make any of them.

Yet the Internet not only exists, it has forever altered computing and communications.

A DKMS has similar potential with regard to the deployment of cryptographic key
infrastructure—it can literally enable “the Internet of keys”. But as such, it has a unique set of
requirements that go beyond those in NIST 800-130. Those requirements are enumerated in
this section.

6.1. Decentralization and Decentralized Identifiers (DIDs)

The DKMS design MUST NOT assume any reliance on a centralized authority for the
system as a whole.

The DKMS design MUST assume all participants are independent actors identified with
DIDs conformant with the DID Data Model and Generic Syntax specification but
otherwise acting in their own decentralized security and privacy domains.

The DKMS design MUST support options for decentralized key recovery.

What distinguishes Distributed Key Management from conventional CKMS is the fact that the
entire design assumes decentralization: there is no central authority responsible for many of the
traditional functions of a key management system. This begins with identification and
addressing: by definition, entities participating in a DKMS all have DIDs, and therefore have a
common set of metadata available to bootstrap all other interactions.

The lack of a central authority as a fallback means that a global DKMS infrastructure must

 DKMS Requirements Report 20 June 2017 Page 18

achieve interoperability organically based on a shared set of specifications, just like the Internet.

Note that the need to maintain decentralization is most acute when it comes to key recovery: the
advantages of decentralization are nullified if key recovery mechanisms reintroduce
centralization.

6.2. Privacy and Pseudonymity

The DKMS design MUST NOT introduce new means of correlating participants by virtue
of using the DKMS standards.

The DKMS design SHOULD increase privacy and security by enabling the use of
pseudonyms, selective disclosure, and encrypted private channels of communication.

Any usage of biometrics in DKMS architecture MUST protect the biometric owner’s
privacy.

Conventional PKI and CKMS rarely have anti-correlation as a primary requirement. Distributed
key management should ensure that participants will have more, not less, control over their
privacy as well as their security.

This is especially important when it comes to biometrics. Biometrics can play a special role in
the DKMS architecture because it is one aspect of an individual’s unique identity that requires
no effort to maintain. But this same quality means a privacy breach of biometric attributes could
be disastrous because they may be unrecoverable.

6.3. Usability

The components of the DKMS design intended for usage by individual identity owners
MUST be safely usable without any special training or knowledge of cryptography or
key management.

In many ways this follows from decentralization: in a DKMS, there is no central authority to
teach everyone how to use it. It must be automated and intuitive to a very high degree, similar to
the usability achieved by modern encrypted OTT messaging products like Whatsapp, iMessage,
and Signal.

According to the BYU Internet Security Research Lab, this level of usability is a necessary
property of any successfully deployed system. “We spent the 1990s building and deploying
security that wasn’t really needed, and now that it’s actually desirable, we’re finding that nobody

 DKMS Requirements Report 20 June 2017 Page 19

can use it” [Guttman and Grigg, IEEE Security and Privacy, 2005]. The DKMS needs to be able
to support a broad spectrum of applications, with both manual and automatic key management,
in order to satisfy the numerous security and usability requirements of those applications.

Again, this requirement is particularly acute when it comes to key recovery. Because there is no
central authority to fall back on, the key recovery options must not only be anticipated and
implemented in advance, but they must be easy enough for a non-technical user to employ
while still preventing exploitation by an attacker.

6.4. Multiple Trust Models

The DKMS design MUST NOT assume a single uniform trust model or trust framework.

The DKMS design MUST enable participants to employ multiple trust models or trust
frameworks and to extend these as required.

Most CKMS systems have one specific trust model. The decentralized nature of DKMS requires
it be more flexible and open to extension, particularly at the edges of the network.

6.5. Delegation and DID Guardianship

The DKMS design MUST enable key management to be delegated by one identity
owner to another, including the DID concept of guardianship.

Although the DKMS infrastructure enables self-sovereign identity, not all individuals have the
ability to be self-sovereign. They may be operating at a physical, economic, or network
disadvantage that requires another identity owner (individual or org) to manage their keys.

Other identity owners may simply prefer to have others manage their keys for purposes of
convenience, efficiency, or safety. In either case, this means DKMS architecture needs to
incorporate the concept of guardianship as defined in the DID Data Model and Generic Syntax
1.0 specification.

6.6. Portability

The DKMS design MUST enable an identity owner’s DKMS-compliant key management
capabilities to be portable across multiple DKMS-compliant devices, applications, and
service providers.

 DKMS Requirements Report 20 June 2017 Page 20

https://github.com/WebOfTrustInfo/rebooting-the-web-of-trust-fall2016/blob/master/final-documents/did-implementer-draft-10.pdf
https://github.com/WebOfTrustInfo/rebooting-the-web-of-trust-fall2016/blob/master/final-documents/did-implementer-draft-10.pdf

While the NIST 800-130 specifications have an entire section on interoperability, those
requirements are focused primarily on interoperability of CKMS components with each other
and with external CKMS systems. They do not encompass the need for a decentralized identity
owner to be able to port their key management capabilities from one CKMS device, application,
or service provider to another.

This is the DID and DKMS equivalent of telephone number portability, and it is critical not only
for the general acceptance of DKMS infrastructure, but to support the ability of DID owners to
act with full autonomy and independence. As with telephone number portability, it also helps
ensure a robust and competitive marketplace for DKMS-compliant products and services.

6.7. Extensibility

The DKMS design SHOULD be capable of being extended to support new
cryptographic algorithms, keys, data structures, and modules, as well as new distributed
ledger technologies and other security and privacy innovations.

Section 7 of NIST 800-130 includes several requirements for conventional CKMS to be able to
transition to newer and stronger cryptographic algorithms, but it does not go as far as is required
for DKMS infrastructure, which must be capable of adapting to evolving Internet security and
privacy infrastructure as well as rapid advances in distributed ledger technologies.

It is worth noting that, although the DKMS specifications will not themselves include a trust
framework; rather, one or more trust frameworks can be layered over them to formalize certain
types of extensions. This provides a flexible and adaptable method of extending DKMS to meet
the needs of specific communities.

6.8. Simplicity

Given the inherent complexity of key management, the DKMS design SHOULD aim to
be as simple and interoperable as possible by pushing complexity to the edges and to
extensions.

Simplicity and elegance of design are common traits of most successful decentralized systems,
starting with the packet-based design of the Internet itself. The less complex a system is, the
easier it is to debug, evaluate, and adapt to future changes. Especially in light of the highly
comprehensive scope of NIST 800-130, this requirement highlights a core difference with
conventional CKMS design: the DKMS specification should NOT try to do everything, e.g.,

 DKMS Requirements Report 20 June 2017 Page 21

https://en.wikipedia.org/wiki/Local_number_portability

enumerate every possible type of key or role of user or application, but let those be defined
locally in a way that is interoperable with the rest of the system.

6.9. Open System and Open Standard

The DKMS design MUST be an open system based on open, royalty-free standards.

While many CKMS systems are deployed using proprietary technology, the baseline DKMS
infrastructure must, like the Internet itself, be an open, royalty-free system. It may, of course,
have many proprietary extensions and solutions built on top of it.

 DKMS Requirements Report 20 June 2017 Page 22

7. Conclusion
Our examination of conventional CKMS requirements as enumerated in tremendous detail by
NIST 800-130 revealed that two-thirds of them applied directly to a decentralized key
management system, and most of the rest applied with some modification. However the
requirements of conventional CKMS systems, rooted in hierarchical PKI architecture, do not
completely capture all the requirements of a DKMS infrastructure precisely because it has a
different “root”: distributed ledger technology (DLT), for which the starting point in design is the
need for decentralization and all that it entails. This is shown graphically in Figure 2:

Figure 2: The requirements of DKMS span both conventional PKI and DLT architectures

However, by spanning both conventional PKI and distributed ledger technologies, DKMS
infrastructure holds the promise to foster the “Internet of keys” and democratize the power of
public/private key cryptography.

Developing the design and architecture for DKMS infrastructure that meets these requirements
is the focus of our second milestone.

 DKMS Requirements Report 20 June 2017 Page 23

